386 research outputs found

    Multivariate Perturbation of a Growth Factor-Cytokine Signalling Network Reveals Complex Systemic Responses in Glioblastoma Cells

    Get PDF
    Glioblastoma cells can evade TRAIL-induced apoptosis through various strategies involving the growth factor-activated MEK–MAPK/ERK and PI3K–Akt/PKB pro-survival signalling cascades. Although these signalling cascades have been studied extensively, our understanding of how they interact and participate in modulating apoptosis as part of a dynamic cell-wide network of signalling proteins is limited by traditional univariate experimental paradigms. Here, we study three human glioblastoma cell lines with differential response to TRAIL-induced apoptosis: LN229 (resistant), T98G, and A172 (both susceptible). We show that differential TRAIL susceptibility in these cell lines is unrelated to expression levels of agonist (DR4 and DR5) or antagonist (DcR1, DcR2, and OPG) receptors for TRAIL and thus TRAIL-induced apoptosis in these cell lines is modulated at the intracellular signalling level. Serum, comprising multiple factors that regulate cellular activity, enhances TRAIL resistance in T98G but not LN229 and A172 cell lines. This protective effect against TRAIL-induced apoptosis is recapitulated by the prototypical survival factor PDGF in T98G cells. Univariate inhibition of cell survival signalling cascades with MEK inhibitor U0126 and PI3K inhibitor LY294002 sensitized T98G cells to TRAIL but did not abrogate PDGF-mediated protection. However, further perturbation with inhibitors in a combinatorial and multivariate manner reveal synergistic effects and complex systemic responses which may be a basis for uncovering novel insights into the regulation of TRAIL-induced apoptosis.Singapore-MIT Alliance (SMA

    A Cloud-Based Global Flood Disaster Community Cyber-Infrastructure: Development and Demonstration

    Get PDF
    Flood disasters have significant impacts on the development of communities globally. This study describes a public cloud-based flood cyber-infrastructure (CyberFlood) that collects, organizes, visualizes, and manages several global flood databases for authorities and the public in real-time, providing location-based eventful visualization as well as statistical analysis and graphing capabilities. In order to expand and update the existing flood inventory, a crowdsourcing data collection methodology is employed for the public with smartphones or Internet to report new flood events, which is also intended to engage citizen-scientists so that they may become motivated and educated about the latest developments in satellite remote sensing and hydrologic modeling technologies. Our shared vision is to better serve the global water community with comprehensive flood information, aided by the state-of-the- art cloud computing and crowdsourcing technology. The CyberFlood presents an opportunity to eventually modernize the existing paradigm used to collect, manage, analyze, and visualize water-related disasters

    Petrogenesis of the Northwest Africa 4734 basaltic lunar meteorite

    Get PDF
    We report the petrography, mineralogy, trace element abundance geochemistry, and Pb–Pb geochronology of the lunar meteorite Northwest Africa (NWA) 4734 and make a comparison with the LaPaz Icefield (LAP) 02205/02224 low-Ti lunar basaltic meteorites. NWA 4734 is an unbrecciated low-Ti mare basalt composed mainly of subophitic-textured pyroxene (60 vol%) and plagioclase (30%). Pyroxene, plagioclase, and olivine exhibit large compositional variations and intra-grain chemical zoning. Pyroxene and plagioclase in NWA 4734 have rare earth element (REE) concentrations and patterns similar to those of the LAPs. The crystallization age of NWA 4734, determined in situ in baddeleyite, is 3073 ± 15 Ma (2σ), nearly identical to that of the LAPs (3039 ± 12 Ma). NWA 4734 and the LAPs have similar textures, modal abundances, mineral chemistry, and crystallization ages, and are most likely source-crater paired on the Moon. One baddeleyite grain in LAP 02224 displays distinctively older and spatially variable ages, from 3349 ± 62 to 3611 ± 62 Ma (2σ), similar to another baddeleyite grain (3109 ± 29 to 3547 ± 21 Ma) reported by Zhang et al. (2010) for the same meteorite. Raman spectra, cathodoluminescence, and stoichiometric studies of the baddeleyite suggest that the two older grains were not endogenic but were trapped by the parental magma. Equilibrium partition calculation shows that the parental melt from which the NWA 4734 plagioclase crystallized has much lower REE contents than its whole rock, indicating an open system during magma evolution. NWA 4734 could have originated from a parental melt with REE concentrations similar to that of the Apollo 12 olivine basalt. The magma likely assimilated a small amount (∼4 wt%) of KREEP-rich material during its ascent through the lunar crust

    A cloud-based global flood disaster community cyber-infrastructure: Development and demonstration

    Get PDF
    Flood disasters have significant impacts on the development of communities globally. This study describes a public cloud-based flood cyber-infrastructure (CyberFlood) that collects, organizes, visualizes, and manages several global flood databases for authorities and the public in real-time, providing location-based eventful visualization as well as statistical analysis and graphing capabilities. In order to expand and update the existing flood inventory, a crowdsourcing data collection methodology is employed for the public with smartphones or Internet to report new flood events, which is also intended to engage citizen-scientists so that they may become motivated and educated about the latest developments in satellite remote sensing and hydrologic modeling technologies. Our shared vision is to better serve the global water community with comprehensive flood information, aided by the state-ofthe- art cloud computing and crowd-sourcing technology. The CyberFlood presents an opportunity to eventually modernize the existing paradigm used to collect, manage, analyze, and visualize water-related disasters

    PO-037 Validation Of Capillary Blood Gas Analysis For The Assessment Of Training Load In Track Cycling

    Get PDF
    Objective The energy supply of daily training of track cycling should be mainly by anaerobic metabolism, which can make the blood buffer capacity facing huge Challenge and being improved. The arterialized capillary blood gas analysis can be a reliable method to evaluate the blood status of base-acid balance, which may reflect the effect of exercise intensity on blood buffer system. The paper validate the blood gas analysis as a reliable method for evaluating the total periodical training load of track cyclists. Methods Five male and five female elite track cyclists performed two phases (four weeks per phase) of training respectively. The content included the track specific, strength and aerobic training. The Borg's Rating of Perceived Exertion (RPE) Scale (0-11) was recorded in the ten minutes after each session and calculated the session RPE (sRPE). The total inertial load (TIL) was calculated by sRPE sum from Monday to Thursday. The arterialized capillary blood gas analysis was performed at 7:00 AM on Monday and Friday. The delta value (ΔPH, ΔPCO2, ΔTCO2, ΔHCO3-, ΔBE, ΔPO2, ΔSO2) were calculated by Friday minus Monday. Pearson's linear correlation was applied to calculate the correlation between TIL and delta value. Independent t test was used to test the differences between two genders. Results There was the moderate correlation between TIL with ΔPH and ΔHCO3- (Correlation Coefficient= 0.712 and 0.642 respectively, P<0.01). But other blood gas indexes didn’t show the obvious relationship with TIL (Correlation Coefficient < 0.5). There was no differences for TIL between male and female (3870.1±788.4 vs. 4130.2±716.7, P>.05). Moreover, ΔHCO3- of male was significant more than female by 95.1% (P<0.01). There were significant correlation between TIL and ΔPH for both male and female (Correlation Coefficient= 0.785 and 0.812 respectively, P<0.01), and between TIL and ΔPH for both male and female (Correlation Coefficient= 0.662  and 0.658 respectively, P<0.01). Conclusions The PH value and bicarbonate radical of blood should be sensitive to the high intensity track cycling training, which can be the valid to evaluate the inertial load. However, gender has no influence on evaluating. The oxygen partial pressure and oxygen saturation of blood can not reflect the training load accurately

    Uniform design for the optimization of Al2O3 nanofilms produced by electrophoretic deposition

    Get PDF
    Surface modification by means of nanostructures is of interest to enhance boiling heat transfer in various applications including the organic Rankine cycle (ORC). With the goal of obtaining rough and dense aluminum oxide (Al2O3) nanofilms, the optimal combination of process parameters for electrophoretic deposition (EPD) based on the uniform design (UD) method is explored in this paper. The detailed procedures for the EPD process and UD method are presented. Four main influencing conditions controlling the EPD process were identified as nanofluid concentration, deposition time, applied voltage and suspension pH. A series of tests were carried out based on the UD experimental design. A regression model and statistical analysis were applied to the results. Sensitivity analyses of the effect of the four main parameters on the roughness and deposited mass of Al2O3 films were also carried out. The results showed that Al2O3 nanofilms were deposited compactly and uniformly on the substrate. Within the range of the experiments, the preferred combination of process parameters was determined to be nanofluid concentration of 2 wt.%, deposition time of 15 min, applied voltage of 23 V and suspension pH of 3, yielding roughness and deposited mass of 520.9 nm and 161.6 × 10− 4 g/cm2, respectively. A verification experiment was carried out at these conditions and gave values of roughness and deposited mass within 8% error of the expected ones as determined from the UD approach. It is concluded that uniform design is useful for the optimization of electrophoretic deposition requiring only 7 tests compared to 49 using the orthogonal design method
    • …
    corecore